彩票|首页欢迎您

                                              Probing the Local Generation and Diffusion of Active Oxygen Species on a Pd/Au Bimetallic Surface by Tip-Enhanced Raman Spectroscopy

                                              Posted: 2020-01-09   Visits: 14

                                              Authors: Hai-Sheng Su, Hui-Shu Feng, Qing-Qing Zhao, Xia-Guang Zhang, Juan-Juan Sun, Yuhan He, Sheng-Chao Huang, Teng-Xiang Huang, Jin-Hui Zhong*, De-Yin Wu, Bin Ren*


                                              Abstract:

                                              Active oxygen species (AOS) play key roles in many important catalytic reactions relevant to clean energy and environment. However, it remains challenging to characterize the active sites for producing AOS and to image the surface properties of AOS, especially on multicomponent metallic catalyst surfaces. Herein, we utilize tip-enhanced Raman spectroscopy (TERS) to probe the local generation and diffusion of OH radicals on a Pd/Au(111) bimetallic catalyst surface. The reactive OH radicals can be catalytically generated from hydrogen peroxide (H2O2) at the metal surface, which then oxidizes the surface adsorbed thiolate, a reactant that is used as the TERS probe. By TERS imaging of the spatial distribution of unreacted thiolate molecules, we demonstrate that the Pd surface is active for generation of OH radicals and the Pd step edge shows much higher activity than the Pd terrace, whereas the Au surface is inactive. Furthermore, we find that the locally generated OH radicals at the Pd step edge could diffuse to both the Au and the Pd surface sites to induce oxidative reactions, with a diffusion length estimated to be about 5.4 nm. Our TERS imaging with few-nanometer spatial resolution not only unravels the active sites but also characterizes in real space the diffusion behavior of OH radicals. The results are highly valuable to understand AOS-triggered catalytic reactions. The strategy of using reactants with large Raman cross sections as TERS probes may broaden the application of TERS for studying catalysis with reactive small molecules.

                                                                                            

                                              Source: https://chem.xmu.edu.cn/en/info/1021/1767.htm

                                              Full Link:https://pubs.acs.org/doi/pdf/10.1021/jacs.9b10512


                                                                                          Foreign exchange

                                                                                          Real estate

                                                                                          Finance

                                                                                          Second-hand housing

                                                                                          game

                                                                                          Application Essentials

                                                                                          Premier League

                                                                                          entertainment

                                                                                          news